WTT Blog - Tagged with research

Capturing Catchment Connectivity Issues

Posted on November 13, 2017

Capturing Catchment Connectivity Issues

Here at WTT, we're (no pun intended!) all for reconnecting fragmented systems: see recent news items from Tim Jacklin's work on letting the Dove flow, applications of Mike Blackmore's patented #weirbegone, or some of my recent work with Aire Rivers Trust as just a few examples. Europe wide, indeed globally, there is growing recognition of such issues but do we know even the true extent of the problem? Hence, it's great to hear from Siobhán Atkinson regarding her current PhD research.

River connectivity is vital for sustaining healthy freshwater ecosystems. It is important for maintaining resident as well as migratory fish populations, natural sediment movement, and habitat for macroinvertebrate communities and other aquatic organisms. Despite this, few rivers remain uninterrupted across Europe.

Genetics to underpin effective management

Posted on August 30, 2017

Genetics to underpin effective management

As WTT Conservation Officers, we are asked to make assessments on what is good and bad habitat for trout populations based upon visual observation and expert judgement; this is the basis of a typical Advisory Visit Report. If we had the time and resource, we'd look to the fish themselves to tell us! In this latest blog from current researchers, Jess Fordyce from the University of Glasgow Scottish Centre for Ecology and the Natural Environment outlines how an understanding of the genetic diversity within a catchment can inform more efficient management strategies for safe-gaurding trout populations.

The brown trout, Salmo trutta, is an extremely diverse species in terms of behaviour, physiology, genetics and morphology. Brown trout can adopt a range of life-history strategies which include freshwater residency in rivers and/or lakes, or anadromy – the movement from fresh to saltwater and back again (ie sea trout). The diversity of brown trout in terms of genetics and morphology was the focus of my PhD which was funded by an EU project called IBIS (Integrated Aquatic Resource Management Between Ireland, Northern Ireland and Scotland) and the Atlantic Salmon Trust. My study site was the Foyle catchment which is a large dendritic (branching) system with an area of around 4500km2 located in both Ireland and Northern Ireland. This catchment is managed by the Loughs Agency. Like other catchments across Britain and Ireland, sea trout numbers have been sharply declining over the last few decades. Therefore, it is important to understand the genetic population structuring of brown trout (the pattern of genetic variation) and which environmental factors shape such structuring. From this information, it is possible to detect exactly which populations contribute significantly to the production of sea trout and hence provide focused management.

Low flows and salmonid rivers: an update

Posted on July 14, 2017

Low flows and salmonid rivers: an update

Jess Picken was the first to contribute to our new series of guest blogs in which she outlined plans for her PhD. And clearly, she has been busy! She is back with an update already...

To recap on my previous post, numerous studies have reported that low flow reduces the density of salmonids within streams. What is not so well-known is what, or how, other parts of the salmonids’ ecosystem are also affected by low flow. Riverflies and other aquatic macroinvertebrates make up a large proportion of juvenile salmonid diet, which is subsequently reflected in salmonid growth rate, condition and survival. Understanding how the availability of these macroinvertebrates changes with reduced summer flow is important to help conserve fish species of high UK and European importance.

My life at the moment... macroinvertebrates down the microscope!

What makes an apex predator: the ferox trout

Posted on June 05, 2017

What makes an apex predator: the ferox trout

I have to admit, the topic of this research really floats my boat (as you may have noticed from the latest Salmo Science Spot)…. I spent several years trying to convince people that perched at the top of the Loch Ness food web was not an elusive plesiosaur but something much, much more sexy. Ferox! So I’m really pleased that the newly doctored Martin Hughes has taken time out to precis his completed PhD, but it does mean I’ll have to review the WTT ferox pages with his new findings.

The brown trout, Salmo trutta, is an incredibly diverse species. Individuals from the same population can adopt completely different life history strategies, which are often given vernacular names. For example, some S. trutta remain in small freshwater streams their entire lives; these are referred to as resident trout. Others migrate into large rivers or lakes to complete their life cycle and retain the name brown trout, but some that migrate into estuarine waters are referred to as slob trout and others that fully migrate into marine waters before returning to natal streams to spawn are called sea trout. One relatively understudied life history is that of ferox trout. ‘Ferox’ which is Latin for ‘Fierce’ is aptly used for these large piscivorous trout which can grow to large size (14kg UK record) and are exceptionally long lived (23 years oldest UK record- reports of 39 years old in Norway). Their impressive growth potential and life span combined with their rarity and near mythical status only adds to the allure to both anglers and scientists alike.

Can watercress farming directly impact fish communities in chalk streams?

Posted on April 27, 2017

Can watercress farming directly impact fish communities in chalk streams?

Asa White gets to call wading around in the Bourne Rivulet work! Our research interests in chalk streams have some parallels. While I am curious as to how a colourless, odourless gas (methane) contributes to the fuelling of their food webs, Asa is trying to understand how an equally invisible chemical is affecting invertebrate and fish life. Here, he outlines his research plans and offers up the experience of electric fishing - read on! 

Watercress is native to the chalk streams of southern England, and has been harvested for millennia. In the early 19th century, the advent of the railway made commercial production viable for the first time. A growing London market supplied by trains (the famous ‘Watercress Line’ being one) led to an explosion in the number of watercress farms throughout the south of England. Historically, watercress was grown in gravel beds irrigated by water diverted from chalk streams, but hygiene concerns now oblige growers to irrigate their beds using fresh water abstracted from boreholes. In both instances, the water used to irrigate the beds is discharged into adjacent chalk streams. 

Impacts of low flows on salmonid river ecosystems

Posted on March 22, 2017

Impacts of low flows on salmonid river ecosystems

In the first of a new series from students actively involved in research relevant to wild trout, Jessica Picken from Queen Mary University of London summarises the aims of her PhD working with the Game & Wildlife Conservation Trust and with CEFAS.

Climate change is considered to be the most critical disturbance imposed on natural systems on a global scale. Climate models predict that average temperatures in the UK will increase over the course of the next 50 years with the greatest warming in the south of England during summer months, and that annual average precipitation will reduce. However, the reduction in precipitation is expected to be more pronounced during summer than winter, whereas extreme winter precipitation is expected to become more frequent. In other words, there is likely to be an overall shift towards drier summers but wetter winters.

Restoring longitudinal connectivity: a more holistic approach

Posted on August 23, 2016

Restoring longitudinal connectivity: a more holistic approach

Anyone who knows anything about fish in the UK will surely know Dr Martyn Lucas, the head of the Aquatic Animal Ecology Research Group within the School of Biological and Biomedical Sciences at Durham University. He’s an absolute legend and all round good bloke with whom I have done some research in the past. From amongst the many projects he is involved with, his group has published two papers this year revolving around fish passage issues. The first was led by Mike Forty (supported by the Catchment Restoration Fund, CRF) who wrote a layman’s version for us in Salmo and whom I have written about before on the WTT blog pages. Below is a quick summary by Martyn, reproduced with his permission, regarding the second output which included brown trout and bullhead as the study species.  

Jeroen Tummer’s paper concerns longitudinal connectivity restoration for stream fish communities, particularly in terms of the use of ‘nature-like’ passage solutions and obstacle removal, and the utility of a more holistic approach for evaluating outcomes. One of the key findings of our study is that quantitative fish surveys don't do a very good job in telling us whether connectivity restoration work for stream fishes has worked or not in the short term! There are much better ways of doing this as illustrated in the paper. However, they do provide valuable, contextual evidence about changes in the fish community towards or away from the restoration objectives, including those in the longer term (so long as standardised monitoring at a regular frequency is continued).

Food web responses to habitat rehabilitation

Posted on August 04, 2016

Food web responses to habitat rehabilitation

Connectivity is a recurrent theme of my blog posts. Last year I wrote about plans for notching some of the redundant low mill weirs on a tributary of the River Aire, local to me. Those plans will come to fruition in the next few weeks as Pete Turner (Environment Agency) and I have had our bespoke environmental permit consented to progress the works, so I’ll report back to show you how the channel is evolving. I also wrote about making connections and how Mike Forty’s PhD research with Ribble Rivers Trust had thrown up some really interesting results, especially regarding the importance of free movement for precocious parr; the published work is available here.

To communicate the worth of habitat restoration work (in supporting the Ecosystem Service approach & Natural Capital principles) to the wider public and to potential future funders, and thus maintain, increase and maximise the potential impact, there is an urgent need for some simple and accessible assessments that a broad audience can appreciate. I have proposed to use the concept of the food web in this context because: a) the knock-on effects of habitat degradation translate into food web alterations very quickly; and b) the food web is recognised by a broad swathe of society (and from a very early age). Hence, measures of food webs can be used as an engagement & educational tool that will increase the understanding and value of restoration projects, as well as a tangible and effective measure for funding applications.

Sediment sources and salmonid successes

Posted on January 11, 2016

Sediment sources and salmonid successes

On my WTT-inspired ramblings recently, I came across a shocking sight, above. Shocking because firstly, I was expecting to see a village pond complete with a raft of local ducks bobbing around, not a barren mudscape stuck behind a defunct dam; and secondly, because I immediately started to wonder where all that accrued sediment was being washed away to….. and where it was being deposited… and might it not be being dumped upon some salmonid redds at a rather inopportune time?